
Understanding Where Requirements are Implemented
The Relationship between Requirements Traces and Method Calls in Code

Benedikt Burgstaller
Johannes Kepler University

4040 Linz, Austria
benedikt.burgstaller@jku.at

Alexander Egyed
Johannes Kepler University

4040 Linz, Austria
alexander.egyed@jku.at

Abstract—Trace links between requirements and code reveal
where requirements are implemented. Such trace links are
essential for code understanding and change management. The
lack thereof is often cited as a key reason for software
engineering failure. Unfortunately, the creation and maintenance
of requirements-to-code traces remains a largely manual and
error prone task due to the informal nature of requirements. This
paper demonstrates that reasoning about requirements-to-code
traces can be done, in part, by considering the calling
relationships within the source code (call graph). We observed
that requirements-to-code traces form regions along calling
dependencies. Better knowledge about these regions has several
direct benefits. For example, erroneous traces become detectable
if a method inside a region does not trace to a requirement. Or, a
missing trace (incompleteness) can be identified. Knowledge of
requirement regions can also be used to help guide developers in
establishing requirements-to-code traces in a more efficient
manner. This paper discusses requirement regions and sketches
their benefits.

Keywords-requirements, call tree, traces, feature location

I. INTRODUCTION

Trace links connect requirements, design, code, test cases, and
many other artefacts. This paper focuses on requirements-to-
code traces (sometimes also called feature location) which
reveal where the requirements are implemented in the code.
Requirements traces are essential [1] for adapting to
requirements changes (i.e., to determine what code is affect by
a requirements change), they reveal the rationale for design
and coding decisions (what is this class good for?), and
convey design decisions (why was this class implemented this
way?). Indeed, trace links are an important pre-requisite to
model-based software development [2-4] and at the centre of
end-to-end integration [5]. It is thus not surprising that
traceability is mandated by numerous standards and prescribed
in best-practice methods (DOD Std 2167A, IEEE Std. 1219,
ISO 15504, and SEI CMM).

Unfortunately, real-world software systems typically lack
trace links despite their reported benefits [1]. Although it may
appear easier to capture trace links during development, it is
rarely done in industrial practice because of the cost of having
to maintain them (i.e., trace links deteriorate during software
evolution like other software artifacts). The alternative, trace

recovery at a later time when the traces are needed, is also
problematic because developers no longer remember the many
vital details needed for doing so (often the original developers
are no longer available).

Unfortunately, there is little automation available for the
capture, recovery and subsequent maintenance of
requirements-to-code trace links [6] because of the informal
nature of requirements (most requirements are captured
informally in natural language). The most widely researched
technology for capturing requirements-to-code traces to date is
information retrieval where trace links are derived through
wording similarities between requirements and code [7-11].
To achieve high precision and recall, information retrieval
requires rich requirements descriptions and well-documented
source code. An alternative focus of researchers has been on
the problem of feature interactions – as in crosscutting
concerns [12], concern graphs [13] or concept lattices [14].
These technologies do not reason about traces directly but
rather about how concerns in general (i.e., requirements could
be concerns) interact in the source code which is related to the
traceability problem. There, it has been shown that calling
relationships within the source code are useful for
understanding feature interactions. Indeed, knowledge about
calling relationships have even been used in concert with IR
technologies to automatically improve its quality [15] which
already suggests that there must be some kind of relationship.

This paper thus investigates the relationship between calling
relationships and requirements-to-code trace links. The biggest
difference to state of the art is that we investigate the calling
relationship for each requirement separately. On first
inspection, the relationship between any given requirement
and code is not straightforward. If some method A implements
a requirement R and method A calls method B then one of the
following two situations applies:

1) method B implements a service required by method A
and, by implication, implements requirement R also

2) method B implements another requirement that is meant
to coincide when method A occurs. By implication,
method B then does not implement requirement R.

There are more subtleties to these two interpretations but the
fundamental dilemma is that a calling relationship between

two methods is not enough to correctly decide on
requirements-to-code traces.

Nonetheless, during the examination of requirements-to-code
traces for several software systems, we observed that the code
that implements any given requirement is usually connected
via calling relationships. It is rare for a single requirement to
be distributed across many areas of the code. This observation
is based on over fifty, mostly functional requirements and does
not constitute proof but rather a strong heuristic that should be
exploited. This observation also does not stand in
contradiction to the two interpretations above. It simply
implies that when a method implements a requirement then
other methods implementing that requirement will be among
the methods called (callees) or methods calling it (callers). If
we think of methods and their calling relationships as a call
graph (the nodes are the methods and the edges are the calling
relationships) then requirements implement connected areas in
that graph – we refer to these areas as requirement regions.
Only methods inside such a region belong to a given
requirement (interpretation 1 above) but not necessarily all
methods they call belong (interpretation 2 above).

The main aim of this paper is to discuss requirement regions.
We believe that requirement regions are a new tool to better
understand traceability. To illustrate this, this paper will also
sketch applications of requirement regions: 1) guiding users
through trace capture by making suggestions; 2) assessing the
quality of requirements-to-code traces (i.e., detect errors); and
3) supporting trace maintenance during software evolution to
ensure that captured traces remain correct. Requirement region
may well be useful beyond traceability but page limits
preclude further discussions.

II. PROBLEM

The two main problems of dealing with requirements to code
traces are: lack of reliable automation and scalability. The
scalability problem is obvious in the fact that for n
requirements and m code pieces (e.g., classes, methods, or
lines of code), there are n*m potential trace links to
investigate. Even if a piece of code (e.g., method or class)
does not implement a requirement, this fact must be assessed.
Traces are often captured and depicted in form of trace
matrices. Table 1 depicts an excerpt of such a matrix for the
Chess system – one of four study systems we are basing our
observations on. A trace is indicated in form of ‘x’. For
example, the method setPiece traces to the requirement “User
should be able to start a new game” (referred to as requirement
R0) and some other requirement R1.

To ensure a more general applicability of our findings, we
opted to investigate multiple software systems of different
application domains. The basic characteristics are depicted in
Table 2 (a small excerpt of the trace matrix of the Chess
system is depicted in Table 1). For the four study systems we
investigated between 8-21 requirements. These requirements
covered mostly functional requirements about core features of
the system. We obtained the requirements and the

requirements traces from the original developers who built the
study systems or from people who were familiar with the
source code. Thus, the input was complete and as correct as
could be. Since trace capture is time consuming and
expensive, we focused on a subset of the requirements for
each system only. Some sample requirements were:

 Chess: User should be able to start a new game (which is
R1 in Table 1)

 VOD: A movie should start playing within 1 second of
selection

 Gantt: User should be able to create a new task
 jHotDraw: User should be able to delete connections

between figures.

Table 1. Excerpt of Trace Matrix for Chess System

 R0 R1 R2 R3 ...
setRun x

run x
getBoard x

clone x x
setTimer x x
display x
getType x x
doPly x

setPiece x x
...

Table 2. Information on the four Cases Studies

 VOD Chess Gantt jHotDraw

Language Java Java Java Java
KLOC 3.6 7.2 41 72

Methods 193 424 13432 21532
Sample

Requirements
14 8 15 21

Size of Method
Trace Matrix

2702 3392 201480 452172

In addition, we also captured the calling relationships among
the many methods of these systems in form of a call tree. The
call trees were the result of exhaustive testing and profiling.
Together, this data was a benchmark to assess 1) the existence
of the requirement regions and 2) some of its properties.

The quadratic growth of the requirements-to-code trace matrix
is evident in the two-dimensional shape of the matrix in Table
1. Table 2 reveals, for example, that the trace matrix for
jHotDraw with 21 requirements had over 450,000 cells. Given
that we look at a rather small set of 21 sample requirements
only, it is clear that trace capture is time consuming. Since
trace capture is also a mostly manual and non-trivial process,
trace matrices likely exhibit many errors.

For generating and validating trace links between
requirements and code, one needs to understand both
requirements and code. Much like our requirements, most
other requirements are captured informally in natural
language. Since natural language processing is still in its

infancy, we are far away from automating trace capture and
maintenance. This paper however suggests that requirements
to code traces can also be understood by investigating the
calling relationships.

III. REQUIREMENT REGIONS

This section discusses how calling relationships among
methods form regions that relate to single requirements.
Requirement regions occur naturally. They are an observation
and not an invention of this work. In the following, we first
discuss our observations on the kinds of rules those
requirement regions seem to adhere to. Thereafter, we will
discuss how knowledge on requirement regions and their rules
can be used to better requirements-to-code traceability. Note
that this work investigates each requirement and its region
separately (the biggest difference to current state of the art).

Figure 1 depicts a part of the call graph of the Chess system.
Each node of the call graph represents a method (for brevity,
only the method name is given, ignoring class and package
names). Each node implements one or more requirements. For
example, method run implements Chess requirement R0 or
method setPiece implements requirement R0 and R1. Table 1
above provided this traceability information. Each method
should implement at least one requirement – or else the
traceability is incomplete or incorrect. Often methods
implement single requirements only, however, requirements
also overlap – they share data and they share functionality.
Some methods thus implement multiple requirements.

A property of a call graph is that it depicts all possible ways
how methods can call one another. For example, doPly calls
setPiece and setPiece calls clone, init, and setEngine. This
structure is a graph since methods can get called by multiple
methods and method calls may even be cyclic. It is not
possible to infer from a call graph whether a method is always
or only sometimes called. For example, setPiece may or may
not call clone always – though it calls it at least once.

Figure 1. Excerpt Chess Call Graph and Requirements Traces

On first glance, the assignment of requirements to methods in
the call graph in Figure 1 seems random. However, most
requirements we studied formed regions in the call graph: the
methods (nodes) belonging to the same requirement were
connected from within such regions via calling relationships
(edges).

Figure 2 depicts one such region for requirement R1 in context
of the call graph depicted in Figure 1. Highlighted in Figure 2
are thus all methods belonging to requirement R1 (middle part,
surrounded by a solid line). Not belonging to R1 are the
remaining methods (left and right parts). Since requirements
are crosscutting, not all methods that are called by setPiece
must belong to R1 (called directly such as setEngine or
indirectly such as setBlock). We observe this in the example
through method getType which belongs to R1 although it calls
methods such as addPly that do not.

doPly
{Not R1}

setPiece
{R1}

display
{Not R1}

setIndex
{Not R1}

addLoc
{Not R1}

addPly
{Not R1}

addCount
{R1}

getType
{R1}

setInitPos
{R1}

init
{R1}

clone
{R1}

repaint
{Not R1}

setRun
{Not R1}

setTimer
{R1}

setBook
{R1}

setEngine
{R1}

setBoard
{Not R1}

getBoard
{Not R1}

run
{Not R1}

Not R1 implies no
trace or short ‘n’

R1 implies trace or
short ‘t’

Figure 2. Requirement R1 forms a region

IV. REQUIREMENTS PATTERNS

Patterns can demonstrate the existence of the requirement
region. The simplest calling pattern is the call from method A
(the caller) to method B (the callee). This pattern applies to
every call in the call graph. Since each code element in this
pattern may or may not implement a given requirement R,
there are four possible scenarios. We denote 't' as the method
tracing to a given requirement and 'n' as not tracing. The '›'
implies that the method on the left calls the one on the right.
For example, ' t›t' implies that method A calls B and both trace
to a given requirement.

Table 3. Possible Calling Patterns involving a single Call

A calls B (denoted A›B)
code element B

implements
requirement R

code element B does
not implement
requirement R

code element A
implements requirement R

t›t t›n

code element A does not
implement requirement R

n›t n›n

We thus studied how often these patterns occurred in the call
graphs of the four case study systems (Table 4). For example,
the call graph for Chess had 4904 calls, of which 1749 calls
were such that both the caller and callee methods implemented
the same requirement.

Table 4. Occurrences of Two-Method Patterns

 VOD Chess Gantt JHotDraw
#calls 952 4904 82008 89082
t›t 258 1749 4099 2520
t›n 278 367 5818 2947
n›t 241 313 5058 3519
n›n 175 2475 67033 80096

We can now ask a simple question: If we know that code A
implements requirement R then how likely does code element
B implement R if we assume that A calls B? We denote this
question as the pattern <t›?> (what is the likelihood of the
callee if the caller traces to R). From Table 5, we know that
the Chess call graph has 1749 occurrences where both the
caller and the callee implemented requirement R (t›t) and 367
occurrences where the caller implemented R but the callee did
not (t›n). It follows that of these total 2116 occurrences, the
callee implemented the same requirement as the caller in 83%
of all occurrences. We thus see that the callee is likely to not
trace to a requirement if the caller does not trace to that
requirement. Likewise, we can now investigate the likelihoods
of other patterns. Table 5 shows the likelihoods for all four
two-method patterns where we see that the t›? and ?›t patterns
favor traces whereas the n›? and ?›n patterns do not.

Table 5. Likelihoods of Two-Method Patterns

 VOD Chess Gantt jHotDraw
t›? (?=t) 48% 83% 41% 46%
?›t (?=t) 52% 85% 45% 42%
n›? (?=n) 96% 89% 93% 96%
?›n (?=n) 82% 87% 93% 97%

It is important to note that the 41-83% likelihoods of ?=t in
<t›?> are a strong support for a trace even though one
might be mislead into believing they are close to random
(50/50). Of the 50+ requirements across the 4 systems we
studied, traces were rare because requirements
implemented in average in only about 5-12% of their
respective code elements. Thus, if someone establishes a
trace for a random code element then that person would
have a 5-12% chance to be correct. However, using the
very simple pattern discussed above, this person now has a
41-83% of correctness if the pattern t-? or ?-t is found.
This is a large improvement. Thus, any cell in Table 5 that
favors ?=t to a greater percentage than 5-12% is an
improvement over random. So, given the small chance to
correctly guess a trace link, we have here several patterns
where the chances of guessing a correct trace link are
significantly stronger than a random guess. Indeed, we already
investigated more elaborate patterns and found that the
percentages increase considerably with just slightly larger
patterns. For example, if a code element is surrounded by two
callers/callees that trace to a given requirement then the
chances for the method to also trace increases to 73-97% for
traces and 95-98% for no traces. This data is strong support to
the existence of requirement regions because it implies that the
traces of a requirement must be in close proximity and cannot
be spread across a system. Future work will explore more
complex patterns.

V. APPLICATIONS TO TRACEABILITY

The main contribution of this paper is requirement regions.
However, knowledge about these regions is only useful in
context of applications that lead to improvements in software
engineering. This section sketches a few applications where
requirement regions lead to better traceability. Particularly,

during maintenance, it is often criticized that developers make
suboptimial decisions – that is they change the code in places
that is not ideal – leading to code degradation and, in the worst
case, to unmaintainable code. Traceability alone may not
prevent code degradation, however, complete and correct
traceability between requirements and code is a pre-requisite
for better code maintenance.

Auto Validation of Requirements-to-Code Traces

We observed two interesting heuristics of requirement regions
that are beneficial for trace validation:

 if two methods in close proximity are outside a region
then the method(s) in between ought to be outside also

 if two methods in close proximity are inside a region then
the method(s) in between ought to be inside also

It is possible to automatically asses the validity of existing
trace matrices based on these heuristics. The only exception is
requirements that are implemented in few methods only
because the heuristics requires a critical mass of methods to
surround other methods. However, we believe that such trivial
requirements are also more easily understood.

Auto-Completion of Requirements-to-Code Traces

Based on the heuristics identified in trace validation, we can
also define heuristics for automatically suggesting missing
requirements-to-code traces. For example, if some methods
inside a region are known than other methods in between them
should belong to the region also.

Guiding Trace Capture and Recovery

Improving completeness supports trace capture but it only
provides benefits “after the fact” when some traceability
information is already available. During trace capture,
developers could benefit from guidance. Entry and exit points
to regions are key to such guidance. In principle, we only have
to find these points because all remaining methods between
them then belong to the region.

Maintaining/Evolving Traceability

Today, trace capture is often not done because of the cost of
having to maintain traces. When requirements change or the
code changes then the requirements-to-code traces between
them may change also. Since requirement regions are based on
the call graph and the call graph may change in response to
code changes, we can understand the impact of requirements
and/or code changes by understanding the impact of call graph
changes onto requirement regions. Thus developers could
benefit from automated maintenance of traceability which is a
major benefit because it affects the cost/benefit tradeoff
between early trace capture vs. later trace recovery.

VI. RELATED WORK

The recovery of requirements-to-code traceability did receive
a fair amount of attention in the research community [8].
However, to date automated approaches are weak because

requirements are typically captured informally and cannot
easily be reasoned about. Prominent technologies, such as
Information Retrieval (IR) [6][8, 9], identify trace links based
on naming similarities (synonyms, etc.).

There have been numerous approaches to increase precision
and recall of traceability recovery using different methods of
gaining information about the application source code. The
most relevant approaches are: McMillan et al. [15] who use
calling relationships to improve the accuracy of information
retrieval approaches and, similarly, the CERBERUS approach
by Eaddy et al. [16] who use a three-tiered approach for
traceability recovery by combining information retrieval,
execution trace analysis, and prune dependency analysis to
locate crosscutting concerns in source code. Both approaches
laid the ground work in recognizing that there is some
relationship between traces and method calls. Yet, our focus
was not on how to validate IR technologies and auto-
correcting their traces. It was mainly on requirement regions
and why more knowledge about them is useful.

The detection and extraction of requirement regions has some
commonalities with identifying crosscutting concerns. Marin
et al., in [12] use fan-in analysis to count the relevancy of a
method for identifying crosscutting concerns. To support the
automation of trace recovery, various techniques and
heuristics have been developed. For instance feature location
techniques [17] or scenario-based techniques [18]. Although
advances have been made to automatically recover links, trace
capture remains a human-intensive activity with high, initial
cost [1, 5, 19, 20]. Unfortunately, most of these techniques
cannot be applied to the requirements-to-code traceability
problem because of the informal nature of requirements.

VII. CONCLUSIONS

This paper discussed that much is to be gained by better
understanding requirement regions and their impact onto
requirements-to-code traces. We briefly discussed that
requirement regions are useful for automatically detecting
errors among requirements-to-code trace links and that regions
could be used to automatically fill in missing requirements-to-
code traces (auto-completion). Current trace capture/recovery
is characterized by systematically exploring all methods and
requirements (a problem of quadratic complexity). Through
the help of requirement regions and their entry/exit points, we
could reinvent how requirements-to-code traces should be
captured by using regions as guidance (trying to guess
entry/exit points). Finally, we believe that requirement regions
could also be used to maintain trace links. Currently, the cost
of trace maintenance is a major deterrent to early trace capture
because trace links may well become obsolete before they are
being used. Future work will explore these applications in
detail and also investigate further properties of requirement
regions. Future work will also investigate other forms of
communication that do not involve method calls: middleware,
network, data sharing etc. Finally, we plan on investigating
how overlaps among requirement regions might yield useful
clues about traceability.

We gratefully acknowledge the financial support of the
Austrian FWF via grant agreement P21321-N15.

REFERENCES
[1] B. Ramesh, L. C. Stubbs, and M. Edwards, “Lessons Learned from

Implementing Requirements Traceability,” Crosstalk -- Journal of
Defense Software Engineering, vol. 8(4), pp. 11-15, 1995.

[2] N. Aizenbud-Reshef, B. T. Nolan, J. Rubin, and Y. Shaham-Gafni,
“Model Traceability,” IBM Systems Journal, vol. 45(3), pp. 515-526,
2006.

[3] M. Deng, R. E. K. Stirewalt, and B. H. C. Cheng, “Retrieval by
Construction: a Traceability Technique to Support Verification and
Validation of UML Formalizations,” Intern. Journal of Software
Engineering and Knowledge Eng., vol. 15(5), pp. 837-872, 2005.

[4] T. Yue, L. C. Briand, and Y. Labiche, “Automated Traceability Analysis
for UML Model Refinements,” Journal of Information and Software
Technology, vol. 51 pp. 512-527, 2009.

[5] M. Lindvall, and K. Sandahl, “Practical Implications of Traceability,”
Journal on Software - Practice and Experience (SPE), vol. 26(10), pp.
1161-1180, 1996.

[6] O. C. Z. Gotel, and A. C. W. Finkelstein, “An Analysis of the
Requirements Traceability Problem,” in Proc. of the 1st Intern.
Conference on Requirements Engineering, 1994, pp. 94-101.

[7] J. Cleland-Huang, C. K. Chang, and M. Christensen, “Event-Based
Traceability for Managing Evolutionary Change,” IEEE Trans. Softw.
Eng., vol. 29(9), pp. 796-810, 2003.

[8] J. Cleland-Huang, B. Berenbach, S. Clark, R. Settimi, and E. Romanova,
“Best Practices for Automated Traceability,” Computer, vol. 40(6), pp.
27-35, 2007.

[9] G. Antoniol, G. Canfora, G. Casazza, A. De Lucia, and E. Merlo,
“Recovering Traceability Links between Code and Documentation,”
IEEE Transactions on Software Eng. vol. 28(10), pp.970-983, 2002.

[10] J. H. Hayes, A. Dekhtyar, S. K. Sundaram, and S. Howard, “Helping
Analysts Trace Requirements: An Objective Look,” in 12th IEEE
International Requirements Engineering Conference, 2004.

[11] G. Spanoudakis, A. Zisman, E. Perez-Minana, and P. Krause, “Rule-
based generation of requirements traceability relations,” Journal of
Systems and Software vol. 72(2), pp. 105-127, 2004.

[12] M. Marin, A. V. Deursen, and L. Moonen, “ Identifying Crosscutting
Concerns Using Fan-In Analysis,” ACM Transactions on Software
Engineering Methodology, vol. 17, pp. 1-37, 2007.

[13] M. P. Robillard, and G. Murphy, “Concern Graphs: Finding and
Describing Concerns using Structural Program Dependencies,” in
Proceedings of the 22nd International Conference on Software
Engineering (ICSE), Orlando, Florida, 2002, pp. 406-416.

[14] P. Tonella, “Using a Concept Lattice of Decomposition Slices for
Program Understanding and Impact Analysis,” IEEE Transactions on
Software Engineering vol. 29(6), pp. 495-509, 2003.

[15] C. McMillan, D. Poshyvanyk, and M. Revelle, “Combining Textual and
Structural Analysis of Software Artifacts for Traceability Link
Recovery,” in Proceedings of Workshop on Traceability in Emerging
Forms of Software Engineering, Canada, 2009, pp. 41-48.

[16] A. V. A. Marc Eaddy, Giuliano Antoniol, Yann-Gaël Guéhéneuc,
“CERBERUS: Tracing Requirements to Source Code Using Information
Retrieval, Dynamic Analysis, and Program Analysis,” in 16th IEEE
International Conference on Program Comprehension, Amsterdam, The
Netherlands, 2008, pp. 53-62.

[17] R. Koschke, and J. Quante, “On dynamic feature location,” in
Proceedings of the 20th International Conference on Automated
software engineering, Long Beach, CA, USA, 2005.

[18] A. Egyed, “A Scenario-Driven Approach to Trace Dependency
Analysis,” IEEE Transactions on Software Engineering vol. 29(2), pp.
116-132, 2003.

[19] H. U. Asuncion, F. Francois, and R. N. Taylor, “An end-to-end
industrial software traceability tool,” in Proceedings of the 6th European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering, Dubrovnik, Croatia, 2007.

[20] O. Gotel, and A. Finkelstein, “Extended Requirements Traceability:
Results of an industrial case study,” in Proceedings 3rd International
Symposium on Requirements Engineering, 1997, pp. 169-178.

