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Abstract—Trace links between requirements and code reveal 
where requirements are implemented. Such trace links are 
essential for code understanding and change management. The 
lack thereof is often cited as a key reason for software 
engineering failure. Unfortunately, the creation and maintenance 
of requirements-to-code traces remains a largely manual and 
error prone task due to the informal nature of requirements. This 
paper demonstrates that reasoning about requirements-to-code 
traces can be done, in part, by considering the calling 
relationships within the source code (call graph). We observed 
that requirements-to-code traces form regions along calling 
dependencies. Better knowledge about these regions has several 
direct benefits. For example, erroneous traces become detectable 
if a method inside a region does not trace to a requirement. Or, a 
missing trace (incompleteness) can be identified. Knowledge of 
requirement regions can also be used to help guide developers in 
establishing requirements-to-code traces in a more efficient 
manner. This paper discusses requirement regions and sketches 
their benefits. 
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I. INTRODUCTION 

Trace links connect requirements, design, code, test cases, and 
many other artefacts. This paper focuses on requirements-to-
code traces (sometimes also called feature location) which 
reveal where the requirements are implemented in the code. 
Requirements traces are essential [1] for adapting to 
requirements changes (i.e., to determine what code is affect by 
a requirements change), they reveal the rationale for design 
and coding decisions (what is this class good for?), and 
convey design decisions (why was this class implemented this 
way?). Indeed, trace links are an important pre-requisite to 
model-based software development [2-4] and at the centre of 
end-to-end integration [5]. It is thus not surprising that 
traceability is mandated by numerous standards and prescribed 
in best-practice methods (DOD Std 2167A, IEEE Std. 1219, 
ISO 15504, and SEI CMM).  

Unfortunately, real-world software systems typically lack 
trace links despite their reported benefits [1]. Although it may 
appear easier to capture trace links during development, it is 
rarely done in industrial practice because of the cost of having 
to maintain them (i.e., trace links deteriorate during software 
evolution like other software artifacts). The alternative, trace 

recovery at a later time when the traces are needed, is also 
problematic because developers no longer remember the many 
vital details needed for doing so (often the original developers 
are no longer available). 

Unfortunately, there is little automation available for the 
capture, recovery and subsequent maintenance of 
requirements-to-code trace links [6] because of the informal 
nature of requirements (most requirements are captured 
informally in natural language). The most widely researched 
technology for capturing requirements-to-code traces to date is 
information retrieval where trace links are derived through 
wording similarities between requirements and code [7-11]. 
To achieve high precision and recall, information retrieval 
requires rich requirements descriptions and well-documented 
source code. An alternative focus of researchers has been on 
the problem of  feature interactions – as in crosscutting 
concerns [12], concern graphs [13] or concept lattices [14]. 
These technologies do not reason about traces directly but 
rather about how concerns in general (i.e., requirements could 
be concerns) interact in the source code which is related to the 
traceability problem. There, it has been shown that calling 
relationships within the source code are useful for 
understanding feature interactions. Indeed, knowledge about 
calling relationships have even been used in concert with IR 
technologies to automatically improve its quality [15] which 
already suggests that there must be some kind of relationship. 

This paper thus investigates the relationship between calling 
relationships and requirements-to-code trace links. The biggest 
difference to state of the art is that we investigate the calling 
relationship for each requirement separately. On first 
inspection, the relationship between any given requirement 
and code is not straightforward. If some method A implements 
a requirement R and method A calls method B then one of the 
following two situations applies: 

1) method B implements a service required by method A 
and, by implication, implements requirement R also 

2) method B implements another requirement that is meant 
to coincide when method A occurs. By implication, 
method B then does not implement requirement R.  

There are more subtleties to these two interpretations but the 
fundamental dilemma is that a calling relationship between 



two methods is not enough to correctly decide on 
requirements-to-code traces.  

Nonetheless, during the examination of requirements-to-code 
traces for several software systems, we observed that the code 
that implements any given requirement is usually connected 
via calling relationships. It is rare for a single requirement to 
be distributed across many areas of the code. This observation 
is based on over fifty, mostly functional requirements and does 
not constitute proof but rather a strong heuristic that should be 
exploited. This observation also does not stand in 
contradiction to the two interpretations above. It simply 
implies that when a method implements a requirement then 
other methods implementing that requirement will be among 
the methods called (callees) or methods calling it (callers). If 
we think of methods and their calling relationships as a call 
graph (the nodes are the methods and the edges are the calling 
relationships) then requirements implement connected areas in 
that graph – we refer to these areas as requirement regions. 
Only methods inside such a region belong to a given 
requirement (interpretation 1 above) but not necessarily all 
methods they call belong (interpretation 2 above).  

The main aim of this paper is to discuss requirement regions. 
We believe that requirement regions are a new tool to better 
understand traceability. To illustrate this, this paper will also 
sketch applications of requirement regions: 1) guiding users 
through trace capture by making suggestions; 2) assessing the 
quality of requirements-to-code traces (i.e., detect errors); and 
3) supporting trace maintenance during software evolution to 
ensure that captured traces remain correct. Requirement region 
may well be useful beyond traceability but page limits 
preclude further discussions.  

II. PROBLEM 

The two main problems of dealing with requirements to code 
traces are: lack of reliable automation and scalability. The 
scalability problem is obvious in the fact that for n 
requirements and m code pieces (e.g., classes, methods, or 
lines of code), there are n*m potential trace links to 
investigate. Even if a piece of code (e.g., method or class) 
does not implement a requirement, this fact must be assessed. 
Traces are often captured and depicted in form of trace 
matrices. Table 1 depicts an excerpt of such a matrix for the 
Chess system – one of four study systems we are basing our 
observations on. A trace is indicated in form of ‘x’. For 
example, the method setPiece traces to the requirement “User 
should be able to start a new game” (referred to as requirement 
R0) and some other requirement R1.  

To ensure a more general applicability of our findings, we 
opted to investigate multiple software systems of different 
application domains. The basic characteristics are depicted in 
Table 2 (a small excerpt of the trace matrix of the Chess 
system is depicted in Table 1). For the four study systems we 
investigated between 8-21 requirements. These requirements 
covered mostly functional requirements about core features of 
the system. We obtained the requirements and the 

requirements traces from the original developers who built the 
study systems or from people who were familiar with the 
source code. Thus, the input was complete and as correct as 
could be. Since trace capture is time consuming and 
expensive, we focused on a subset of the requirements for 
each system only. Some sample requirements were: 

 Chess: User should be able to start a new game (which is 
R1 in Table 1) 

 VOD: A movie should start playing within 1 second of 
selection 

 Gantt: User should be able to create a new task 
 jHotDraw: User should be able to delete connections 

between figures. 

Table 1. Excerpt of Trace Matrix for Chess System  

 R0 R1 R2 R3 ...  
setRun   x   

run x     
getBoard x     

clone x x    
setTimer  x x   
display    x  
getType  x  x  
doPly x     

setPiece x x    
...      

 

Table 2. Information on the four Cases Studies 

 VOD Chess Gantt jHotDraw

Language Java Java Java Java 
KLOC 3.6 7.2 41 72 

# Methods 193 424 13432 21532 
# Sample 

Requirements
14 8 15 21 

Size of Method 
Trace Matrix 

2702 3392 201480 452172 

 

In addition, we also captured the calling relationships among 
the many methods of these systems in form of a call tree. The 
call trees were the result of exhaustive testing and profiling. 
Together, this data was a benchmark to assess 1) the existence 
of the requirement regions and 2) some of its properties.  

The quadratic growth of the requirements-to-code trace matrix 
is evident in the two-dimensional shape of the matrix in Table 
1. Table 2 reveals, for example, that the trace matrix for 
jHotDraw with 21 requirements had over 450,000 cells. Given 
that we look at a rather small set of 21 sample requirements 
only, it is clear that trace capture is time consuming. Since 
trace capture is also a mostly manual and non-trivial process, 
trace matrices likely exhibit many errors.  

For generating and validating trace links between 
requirements and code, one needs to understand both 
requirements and code. Much like our requirements, most 
other requirements are captured informally in natural 
language. Since natural language processing is still in its 



infancy, we are far away from automating trace capture and 
maintenance. This paper however suggests that requirements 
to code traces can also be understood by investigating the 
calling relationships.  

III. REQUIREMENT REGIONS 

This section discusses how calling relationships among 
methods form regions that relate to single requirements. 
Requirement regions occur naturally. They are an observation 
and not an invention of this work. In the following, we first 
discuss our observations on the kinds of rules those 
requirement regions seem to adhere to. Thereafter, we will 
discuss how knowledge on requirement regions and their rules 
can be used to better requirements-to-code traceability. Note 
that this work investigates each requirement and its region 
separately (the biggest difference to current state of the art). 

Figure 1 depicts a part of the call graph of the Chess system. 
Each node of the call graph represents a method (for brevity, 
only the method name is given, ignoring class and package 
names). Each node implements one or more requirements. For 
example, method run implements Chess requirement R0 or 
method setPiece implements requirement R0 and R1. Table 1 
above provided this traceability information. Each method 
should implement at least one requirement – or else the 
traceability is incomplete or incorrect. Often methods 
implement single requirements only, however, requirements 
also overlap – they share data and they share functionality. 
Some methods thus implement multiple requirements. 

A property of a call graph is that it depicts all possible ways 
how methods can call one another. For example, doPly calls 
setPiece and setPiece calls clone, init, and setEngine. This 
structure is a graph since methods can get called by multiple 
methods and method calls may even be cyclic. It is not 
possible to infer from a call graph whether a method is always 
or only sometimes called. For example, setPiece may or may 
not call clone always – though it calls it at least once.  

 

Figure 1. Excerpt Chess Call Graph and Requirements Traces 

On first glance, the assignment of requirements to methods in 
the call graph in Figure 1 seems random. However, most 
requirements we studied formed regions in the call graph: the 
methods (nodes) belonging to the same requirement were 
connected from within such regions via calling relationships 
(edges). 

Figure 2 depicts one such region for requirement R1 in context 
of the call graph depicted in Figure 1. Highlighted in Figure 2 
are thus all methods belonging to requirement R1 (middle part, 
surrounded by a solid line). Not belonging to R1 are the 
remaining methods (left and right parts). Since requirements 
are crosscutting, not all methods that are called by setPiece 
must belong to R1 (called directly such as setEngine or 
indirectly such as setBlock). We observe this in the example 
through method getType which belongs to R1 although it calls 
methods such as addPly that do not.  

doPly
{Not R1}

setPiece
{R1}

display
{Not R1}

setIndex
{Not R1}

addLoc
{Not R1}

addPly
{Not R1}

addCount
{R1}

getType
{R1}

setInitPos
{R1}

init
{R1}

clone
{R1}

repaint
{Not R1}

setRun
{Not R1}

setTimer
{R1}

setBook
{R1}

setEngine
{R1}

setBoard
{Not R1}

getBoard
{Not R1}

run
{Not R1}

Not R1 implies no 
trace or short ‘n’

R1 implies trace or 
short ‘t’

 

Figure 2. Requirement R1 forms a region 

IV. REQUIREMENTS PATTERNS 

Patterns can demonstrate the existence of the requirement 
region. The simplest calling pattern is the call from method A 
(the caller) to method B (the callee). This pattern applies to 
every call in the call graph. Since each code element in this 
pattern may or may not implement a given requirement R, 
there are four possible scenarios. We denote 't' as the method 
tracing to a given requirement and 'n' as not tracing. The '›' 
implies that the method on the left calls the one on the right. 
For example, ' t›t' implies that method A calls B and both trace 
to a given requirement. 

Table 3. Possible Calling Patterns involving a single Call 

A calls B (denoted A›B) 
code element B 

implements 
requirement R 

code element B does 
not implement 
requirement R 

code element A  
implements requirement R 

t›t t›n 

code element A does not 
implement requirement R 

n›t n›n 

We thus studied how often these patterns occurred in the call 
graphs of the four case study systems (Table 4). For example, 
the call graph for Chess had 4904 calls, of which 1749 calls 
were such that both the caller and callee methods implemented 
the same requirement.  

Table 4. Occurrences of Two-Method Patterns 

 VOD Chess Gantt JHotDraw 
#calls 952 4904 82008 89082 
t›t 258 1749 4099 2520 
t›n 278 367 5818 2947 
n›t 241 313 5058 3519 
n›n 175 2475 67033 80096 

 



We can now ask a simple question: If we know that code A 
implements requirement R then how likely does code element 
B implement R if we assume that A calls B? We denote this 
question as the pattern <t›?> (what is the likelihood of the 
callee if the caller traces to R). From Table 5, we know that 
the Chess call graph has 1749 occurrences where both the 
caller and the callee implemented requirement R (t›t) and 367 
occurrences where the caller implemented R but the callee did 
not (t›n). It follows that of these total 2116 occurrences, the 
callee implemented the same requirement as the caller in 83% 
of all occurrences. We thus see that the callee is likely to not 
trace to a requirement if the caller does not trace to that 
requirement. Likewise, we can now investigate the likelihoods 
of other patterns. Table 5 shows the likelihoods for all four 
two-method patterns where we see that the t›? and ?›t patterns 
favor traces whereas the n›? and ?›n patterns do not. 

Table 5. Likelihoods of Two-Method Patterns 

 VOD Chess Gantt jHotDraw
t›? (?=t) 48% 83% 41% 46% 
?›t (?=t) 52% 85% 45% 42% 
n›? (?=n) 96% 89% 93% 96% 
?›n (?=n) 82% 87% 93% 97% 

 
 

It is important to note that the 41-83% likelihoods of ?=t in 
<t›?> are a strong support for a trace even though one 
might be mislead into believing they are close to random 
(50/50). Of the 50+ requirements across the 4 systems we 
studied, traces were rare because requirements 
implemented in average in only about 5-12% of their 
respective code elements. Thus, if someone establishes a 
trace for a random code element then that person would 
have a 5-12% chance to be correct. However, using the 
very simple pattern discussed above, this person now has a 
41-83% of correctness if the pattern t-? or ?-t is found. 
This is a large improvement. Thus, any cell in Table 5 that 
favors ?=t to a greater percentage than 5-12% is an 
improvement over random. So, given the small chance to 
correctly guess a trace link, we have here several patterns 
where the chances of guessing a correct trace link are 
significantly stronger than a random guess. Indeed, we already 
investigated more elaborate patterns and found that the 
percentages increase considerably with just slightly larger 
patterns. For example, if a code element is surrounded by two 
callers/callees that trace to a given requirement then the 
chances for the method to also trace increases to 73-97% for 
traces and 95-98% for no traces. This data is strong support to 
the existence of requirement regions because it implies that the 
traces of a requirement must be in close proximity and cannot 
be spread across a system. Future work will explore more 
complex patterns.  

V. APPLICATIONS TO TRACEABILITY  

The main contribution of this paper is requirement regions. 
However, knowledge about these regions is only useful in 
context of applications that lead to improvements in software 
engineering. This section sketches a few applications where 
requirement regions lead to better traceability. Particularly, 

during maintenance, it is often criticized that developers make 
suboptimial decisions – that is they change the code in places 
that is not ideal – leading to code degradation and, in the worst 
case, to unmaintainable code. Traceability alone may not 
prevent code degradation, however, complete and correct 
traceability between requirements and code is a pre-requisite 
for better code maintenance.  

Auto Validation of Requirements-to-Code Traces 

We observed two interesting heuristics of requirement regions 
that are beneficial for trace validation: 

 if two methods in close proximity are outside a region 
then the method(s) in between ought to be outside also 

 if two methods in close proximity are inside a region then 
the method(s) in between ought to be inside also  

It is possible to automatically asses the validity of existing 
trace matrices based on these heuristics. The only exception is 
requirements that are implemented in few methods only 
because the heuristics requires a critical mass of methods to 
surround other methods. However, we believe that such trivial 
requirements are also more easily understood.  

Auto-Completion of Requirements-to-Code Traces 

Based on the heuristics identified in trace validation, we can 
also define heuristics for automatically suggesting missing 
requirements-to-code traces. For example, if some methods 
inside a region are known than other methods in between them 
should belong to the region also.  

Guiding Trace Capture and Recovery 

Improving completeness supports trace capture but it only 
provides benefits “after the fact” when some traceability 
information is already available. During trace capture, 
developers could benefit from guidance. Entry and exit points 
to regions are key to such guidance. In principle, we only have 
to find these points because all remaining methods between 
them then belong to the region.  

Maintaining/Evolving Traceability 

Today, trace capture is often not done because of the cost of 
having to maintain traces. When requirements change or the 
code changes then the requirements-to-code traces between 
them may change also. Since requirement regions are based on 
the call graph and the call graph may change in response to 
code changes, we can understand the impact of requirements 
and/or code changes by understanding the impact of call graph 
changes onto requirement regions. Thus developers could 
benefit from automated maintenance of traceability which is a 
major benefit because it affects the cost/benefit tradeoff 
between early trace capture vs. later trace recovery. 

VI. RELATED WORK 

The recovery of requirements-to-code traceability did receive 
a fair amount of attention in the research community [8]. 
However, to date automated approaches are weak because 



requirements are typically captured informally and cannot 
easily be reasoned about. Prominent technologies, such as 
Information Retrieval (IR) [6][8, 9], identify trace links based 
on naming similarities (synonyms, etc.).  

There have been numerous approaches to increase precision 
and recall of traceability recovery using different methods of 
gaining information about the application source code. The 
most relevant approaches are: McMillan et al. [15] who use 
calling relationships to improve the accuracy of information 
retrieval approaches and, similarly, the CERBERUS approach 
by Eaddy et al. [16] who use a three-tiered approach for 
traceability recovery by combining information retrieval, 
execution trace analysis, and prune dependency analysis to 
locate crosscutting concerns in source code. Both approaches 
laid the ground work in recognizing that there is some 
relationship between traces and method calls. Yet, our focus 
was not on how to validate IR technologies and auto-
correcting their traces. It was mainly on requirement regions 
and why more knowledge about them is useful. 

The detection and extraction of requirement regions has some 
commonalities with identifying crosscutting concerns. Marin 
et al., in [12] use fan-in analysis to count the relevancy of a 
method for identifying crosscutting concerns. To support the 
automation of trace recovery, various techniques and 
heuristics have been developed. For instance feature location 
techniques [17] or scenario-based techniques [18]. Although 
advances have been made to automatically recover links, trace 
capture remains a human-intensive activity with high, initial 
cost [1, 5, 19, 20]. Unfortunately, most of these techniques 
cannot be applied to the requirements-to-code traceability 
problem because of the informal nature of requirements. 

VII. CONCLUSIONS 

This paper discussed that much is to be gained by better 
understanding requirement regions and their impact onto 
requirements-to-code traces. We briefly discussed that 
requirement regions are useful for automatically detecting 
errors among requirements-to-code trace links and that regions 
could be used to automatically fill in missing requirements-to-
code traces (auto-completion). Current trace capture/recovery 
is characterized by systematically exploring all methods and 
requirements (a problem of quadratic complexity). Through 
the help of requirement regions and their entry/exit points, we 
could reinvent how requirements-to-code traces should be 
captured by using regions as guidance (trying to guess 
entry/exit points). Finally, we believe that requirement regions 
could also be used to maintain trace links. Currently, the cost 
of trace maintenance is a major deterrent to early trace capture 
because trace links may well become obsolete before they are 
being used. Future work will explore these applications in 
detail and also investigate further properties of requirement 
regions. Future work will also investigate other forms of 
communication that do not involve method calls: middleware, 
network, data sharing etc. Finally, we plan on investigating 
how overlaps among requirement regions might yield useful 
clues about traceability.  
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